DSC 140B
Problems tagged with eigenbasis

Problems tagged with "eigenbasis"

Problem #45

Tags: linear algebra, eigenbasis, quiz-03, eigenvalues, eigenvectors, lecture-04

Let \(\vec{u}^{(1)}, \vec{u}^{(2)}, \vec{u}^{(3)}\) be three unit length orthonormal eigenvectors of a linear transformation \(\vec{f}\), with eigenvalues \(8\), \(4\), and \(-3\) respectively.

Suppose a vector \(\vec{x}\) can be written as:

\[\vec{x} = 2\vec{u}^{(1)} - 3\vec{u}^{(2)} + \vec{u}^{(3)}\]

What is \(\vec{f}(\vec{x})\), expressed in coordinates with respect to the eigenbasis \(\{\vec{u}^{(1)}, \vec{u}^{(2)}, \vec{u}^{(3)}\}\)?

Solution

\([\vec{f}(\vec{x})]_{\mathcal{U}} = (16, -12, -3)^T\) Using linearity and the eigenvector property:

$$\begin{align*}\vec{f}(\vec{x}) &= \vec{f}(2\vec{u}^{(1)} - 3\vec{u}^{(2)} + \vec{u}^{(3)}) \\&= 2\vec{f}(\vec{u}^{(1)}) - 3\vec{f}(\vec{u}^{(2)}) + \vec{f}(\vec{u}^{(3)}) \\\end{align*}$$

Since \(\vec{u}^{(1)}\) is an eigenvector with eigenvalue \(8\), we have \(\vec{f}(\vec{u}^{(1)}) = 8\vec{u}^{(1)}\). Similarly, \(\vec{f}(\vec{u}^{(2)}) = 4\vec{u}^{(2)}\) and \(\vec{f}(\vec{u}^{(3)}) = -3\vec{u}^{(3)}\):

$$\begin{align*}&= 2(8\vec{u}^{(1)}) - 3(4\vec{u}^{(2)}) + (-3)\vec{u}^{(3)}\\&= 16\vec{u}^{(1)} - 12\vec{u}^{(2)} - 3\vec{u}^{(3)}\end{align*}$$

In the eigenbasis, this is simply \((16, -12, -3)^T\).

Problem #46

Tags: linear algebra, eigenbasis, quiz-03, eigenvalues, eigenvectors, lecture-04

Let \(\vec{u}^{(1)}, \vec{u}^{(2)}, \vec{u}^{(3)}\) be three unit length orthonormal eigenvectors of a linear transformation \(\vec{f}\), with eigenvalues \(5\), \(-2\), and \(3\) respectively.

Suppose a vector \(\vec{x}\) can be written as:

\[\vec{x} = 4\vec{u}^{(1)} + \vec{u}^{(2)} - 2\vec{u}^{(3)}\]

What is \(\vec{f}(\vec{x})\), expressed in coordinates with respect to the eigenbasis \(\{\vec{u}^{(1)}, \vec{u}^{(2)}, \vec{u}^{(3)}\}\)?

Solution

\([\vec{f}(\vec{x})]_{\mathcal{U}} = (20, -2, -6)^T\) Using linearity and the eigenvector property:

$$\begin{align*}\vec{f}(\vec{x}) &= \vec{f}(4\vec{u}^{(1)} + \vec{u}^{(2)} - 2\vec{u}^{(3)}) \\&= 4\vec{f}(\vec{u}^{(1)}) + \vec{f}(\vec{u}^{(2)}) - 2\vec{f}(\vec{u}^{(3)}) \\\end{align*}$$

Since \(\vec{u}^{(1)}\) is an eigenvector with eigenvalue \(5\), we have \(\vec{f}(\vec{u}^{(1)}) = 5\vec{u}^{(1)}\). Similarly, \(\vec{f}(\vec{u}^{(2)}) = -2\vec{u}^{(2)}\) and \(\vec{f}(\vec{u}^{(3)}) = 3\vec{u}^{(3)}\):

$$\begin{align*}&= 4(5\vec{u}^{(1)}) + (-2)\vec{u}^{(2)} - 2(3\vec{u}^{(3)}) \\&= 20\vec{u}^{(1)} - 2\vec{u}^{(2)} - 6\vec{u}^{(3)}\end{align*}$$

In the eigenbasis, this is simply \((20, -2, -6)^T\).