
DSC 140B - Quiz 01

Name:

PID:

About the quizzes:

- Quizzes in DSC 140B are *optional* and graded pass/fail.
- A score of 70% or higher earns a “pass” and 1.5 credits toward your final grade.
- If you don’t pass, no credits are earned, but it doesn’t hurt your grade.
- You have 30 minutes to complete the quiz.
- At least one of the questions below will be on an exam (probably with slight changes, such as different numbers).
- Unfortunately, we can’t answer clarifying questions during the quiz. If you think a question has a bug or is unclear, please let us known in a private post on Campuswire after the quiz, and we’ll take it into account when grading.

Problem 1.

True or False: $\sum_{i=1}^n 6(x_i + 10) = (6 \sum_{i=1}^n x_i) + 60n$.

True
 False

Solution: True. See Fact 2 and Fact 4 in the math review slides.

To see how you can prove these properties, see Fact 3.

Problem 2.

How should we interpret $\sum_{i=1}^n x_i + y_i$?

$\sum_{i=1}^n (x_i + y_i)$
 $(\sum_{i=1}^n x_i) + y_i$

Solution: It *has* to mean $\sum_{i=1}^n (x_i + y_i)$, because $(\sum_{i=1}^n x_i) + y_i$ does not make notational sense!

Just like in programming, i is “unbound” in the second choice, so y_i is not defined!

Problem 3.

Compute $(1, 4, 3)^T + (2, 0, 1)^T$.

$$(3, 4, 4)^T$$

Solution: $(1, 4, 3)^T + (2, 0, 1)^T = (1 + 2, 4 + 0, 3 + 1)^T = (3, 4, 4)^T$. From Fact 6.

Problem 4.

Compute $4(1, 4, 3)^T$.

$$(4, 16, 12)^T$$

Solution: $4(1, 4, 3)^T = (4 \cdot 1, 4 \cdot 4, 4 \cdot 3)^T = (4, 16, 12)^T$. From Fact 7.

Problem 5.

Compute $(1, 4, 3)^T \cdot (2, 0, 1)^T$. Here, \cdot denotes the dot product.

$$5$$

Solution: $(1, 4, 3)^T \cdot (2, 0, 1)^T = 1 \cdot 2 + 4 \cdot 0 + 3 \cdot 1 = 5$. From Fact 8.

Problem 6.

Two vectors \vec{u} and \vec{v} are orthogonal to one another (the angle between them is 90°). What is $\vec{u} \cdot \vec{v}$?

$$0$$

Solution: Zero.

$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos(90^\circ)$. Since $\cos(90^\circ) = 0$, the dot product is zero. From Fact 9.

Problem 7.

$\vec{u} = (1, 2, 3)^T$. What is the length of \vec{u} ? (You can leave your answer unsimplified.)

$$\sqrt{14}$$

Solution: $\|\vec{u}\| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$. From Fact 5.

Problem 8.

Suppose $\vec{v} = (3, 3)^T$.

a) Find a unit vector $\vec{u}^{(1)}$ such that $\vec{u}^{(1)} \cdot \vec{v} = 0$. (You can leave your answer unsimplified.)

$$(1, -1)^T / \sqrt{2}$$

Solution: $\vec{u}^{(1)} = (1, -1)^T / \sqrt{2}$.

This comes from Fact 9. That fact tells us that $\vec{v} \cdot \vec{u}^{(1)} = \|\vec{v}\| \|\vec{u}^{(1)}\| \cos(\theta)$. $\vec{u}^{(1)}$ is a unit vector, so $\|\vec{u}^{(1)}\| = 1$. Likewise, $\|\vec{v}\|$ is fixed – we can't change it. So to make the dot product zero, we need to make $\cos(\theta) = 0$, which happens when $\theta = 90^\circ$, meaning $\vec{u}^{(1)}$ is orthogonal to \vec{v} . You can check that $(1, -1)^T / \sqrt{2}$ is a unit vector, and it's orthogonal to \vec{v} .

b) Find a unit vector $\vec{u}^{(2)}$ such that $|\vec{u}^{(2)} \cdot \vec{v}|$ is maximized. (You can leave your answer unsimplified.)

$$(1, 1)^T / \sqrt{2}$$

Solution: $\vec{u}^{(2)} = (1, 1)^T / \sqrt{2}$.

To maximize $|\vec{v} \cdot \vec{u}^{(2)}|$, we need to make $\cos(\theta) = 1$, which happens when $\theta = 0^\circ$. In other words, when $\vec{u}^{(2)}$ is parallel to \vec{v} .

Problem 9.

Which of these is another expression for the norm of \vec{u} (that is, $\|\vec{u}\|$)?

- $\vec{u} \cdot \vec{u}$
- $\sqrt{\vec{u}^2}$
- $\sqrt{\vec{u} \cdot \vec{u}}$
- \vec{u}^2

Solution: This also comes from Fact 5 and/or Fact 9.

Using the coordinate definition of the dot product, we see that the norm of \vec{u} is $\sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + u_2^2 + \dots + u_d^2}$, which we recognize as the Euclidean norm.

Another way to see this is to use the geometric definition of the dot product: $\vec{u} \cdot \vec{u} = \|\vec{u}\| \|\vec{u}\| \cos(0^\circ) = \|\vec{u}\|^2$, where we have said that the angle between \vec{u} and itself is 0° . It follows that $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}}$.

Problem 10.

Let $\vec{u}, \vec{v}, \vec{w}$ be vectors, and let α, β be scalars.

True or False: $\vec{u} \cdot (\alpha \vec{v} + \beta \vec{w}) = \alpha \vec{u} \cdot \vec{v} + \beta \vec{u} \cdot \vec{w}$.

- True
- False

Solution: True. This is the “linear” property of the dot product. See Fact 10.

Problem 11.

Let A, B, C, X be matrices of appropriate dimensions. True or False: $X(AB + C)^T = XB^TA^T + XC^T$.

- True
- False

Solution: True. Matrix-matrix multiplication is distributive (see Fact 16).

Also, the transpose of a product is the product of the transposes in reverse order. That is, $(AB)^T = B^TA^T$. See Fact 17.

Problem 12.

Let

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{pmatrix},$$

and let $\vec{x} = (0, 1, 0, 2, 0)^T$.

What is $A\vec{x}$?

$$(10, 25, 40)^T$$

Solution: $(2, 7, 12)^T + (8, 18, 28)^T = (10, 25, 40)^T$.

Rather than carrying out the full matrix-vector multiplication, you might want to instead use Fact 12, which says that $A\vec{x}$ is a linear combination of the columns of A , where the coefficients are the entries of \vec{x} . So here, the result should be one copy of the second column of A and two copies of the fourth column of A .

Problem 13.

Let A, B and C be matrices of appropriate dimensions.

True or False: $ABC = CBA$.

- True
- False

Solution: False. Matrix multiplication is not commutative. See Fact 16.

Problem 14.

Let $\vec{x} \in \mathbb{R}^d$ and let A be a $d \times d$ matrix. What type of object is $\vec{x}^T A \vec{x}$?

- A scalar
- A vector in \mathbb{R}^d
- A vector in \mathbb{R}^n
- A matrix in $\mathbb{R}^{d \times d}$
- A matrix in $\mathbb{R}^{n \times n}$

A matrix in $\mathbb{R}^{n \times d}$

Solution: A scalar. See Fact 20.

Namely, $A\vec{x}$ is a d -dimensional vector, which we can think of as a $d \times 1$ matrix. Then $\vec{x}^T A\vec{x}$ is a $1 \times d$ matrix times a $d \times 1$ matrix, which is a 1×1 matrix, or a scalar.

Problem 15.

Let $\vec{x}^{(1)}, \dots, \vec{x}^{(n)}$ be d -dimensional vectors. What type of object is:

$$\frac{1}{n} \sum_{i=1}^n \vec{x}^{(i)} (\vec{x}^{(i)})^T$$

A scalar

A vector in \mathbb{R}^d

A vector in \mathbb{R}^n

A matrix in $\mathbb{R}^{d \times d}$

A matrix in $\mathbb{R}^{n \times n}$

A matrix in $\mathbb{R}^{n \times d}$

Solution: A $d \times d$ matrix. See Fact 20.

$\vec{x}^{(i)}$ is a column vector, which we can think of as a $d \times 1$ matrix. On the other hand, $(\vec{x}^{(i)})^T$ is a row vector, which we can think of as a $1 \times d$ matrix. So the product $\vec{x}^{(i)}(\vec{x}^{(i)})^T$ is $(d \times 1)(1 \times d)$, which is a $d \times d$ matrix.

So each term in the sum is a $d \times d$ matrix, and the sum of n such terms is also a $d \times d$ matrix. Dividing by n doesn't change the type of object.