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News



News

▶ Quiz 02 tonight.

▶ See Campuswire post re: Peter Chi’s study on
data science education.
▶ You get a $10 gift card to the bookstore.



Exercise

Are you planning on taking the quiz tonight?
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The Spectral Theorem



Eigenvectors

▶ Let 𝐴 be an 𝑛 × 𝑛 matrix. An eigenvector of 𝐴 with
eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such that
𝐴 ⃗𝑣 = 𝜆 ⃗𝑣.



Eigenvectors (of Linear
Transformations)

▶ Let ⃗𝑓 be a linear transformation. An eigenvector
of ⃗𝑓 with eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such
that ⃗𝑓( ⃗𝑣) = 𝜆 ⃗𝑣.



Importance

▶ We will see why eigenvectors are important in
the next part.

▶ For now: what are they?



Geometric Interpretation

▶ Recall: ⃗𝑣 is an eigenvector if ⃗𝑓( ⃗𝑣) = 𝜆 ⃗𝑣.

▶ Meaning: when ⃗𝑓 is applied to one of its
eigenvectors, ⃗𝑓 simply scales it.



Geometric Interpretation

▶ The eigenvalue, 𝜆, tells us how much the
eigenvector is scaled.
▶ If 𝜆 > 1, the eigenvector is stretched.
▶ If 0 < 𝜆 < 1, the eigenvector is shrunk.
▶ If 𝜆 < 0, the eigenvector is flipped and scaled.



Exercise

Draw as many (linearly independent) eigenvectors
as you can.

𝐴 = (5 0
0 2)



Exercise

Draw as many (linearly independent) eigenvectors
as you can.

𝐴 = ( 2 −1
−1 3 )



Exercise

Consider the linear transformation which mirrors
its input over the line of 45∘. Give two orthogonal
eigenvectors of the transformation.



Exercise

Draw as many (linearly independent) eigenvectors
as you can.

𝐴 = ( 5 5
−10 12)



Caution!

▶ Not all matrices have even one eigenvector!1

▶ When does a matrix have multiple (linearly
independent) eigenvectors?

1That is, with a real-valued eigenvalue.



Example Linear Transformation

𝐴 = ( 5 5
−10 12)



Example Linear Transformation

𝐴 = (1 1
0 1)



Example Linear Transformation

𝐴 = (1 1
0 1)



Example Symmetric Linear
Transformation

𝐴 = ( 2 −1
−1 3 )



Example Symmetric Linear
Transformation

𝐴 = ( 2 −1
−1 3 )



Example Symmetric Linear
Transformation

𝐴 = (5 1
1 2)



Example Symmetric Linear
Transformation

𝐴 = (5 1
1 2)



Observation

▶ It seems that there is something special about
symmetric matrices...



Symmetric Matrices

▶ Recall: a matrix 𝐴 is symmetric if 𝐴𝑇 = 𝐴.

(
1 2 3
2 4 5
3 5 6

)

▶ A linear transformation ⃗𝑓 is symmetric if its
matrix representation is symmetric.



Observation #1

▶ Symmetric linear
transformations have
axes of symmetry.
▶ One for each
dimension.



Observation #2

▶ The axes of symmetry
are orthogonal to one
another.



Observation #3

▶ The action of ⃗𝑓 along an
axis of symmetry is
simply to scale its input.

▶ That is, the eigenvectors
point along the axes of
symmetry.



Observation #4

▶ The size of this
scaling can be
different for each axis.



Main Idea

The eigenvectors of a symmetric linear transfor-
mation (matrix) are its axes of symmetry. The
eigenvalues describe how much each axis of sym-
metry is scaled.



Exercise

Consider the linear transformation which mirrors
its input over the line of 45∘. Give two orthogonal
eigenvectors of the transformation.



How many?

▶ The symmetric 2 × 2 matrices we saw all had 2
orthogonal eigenvectors.

▶ Does a 3 × 3 symmetric matrix have 3 orthogonal
eigenvectors?

▶ What about 𝑛 × 𝑛 symmetric matrices?



The Spectral Theorem2

Theorem

Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix. Then you can
always find 𝑛 eigenvectors of 𝐴 which are all mutu-
ally orthogonal.

2for symmetric matrices



Careful!

▶ The spectral theorem does not say that an 𝑛 × 𝑛
matrix has 𝑛 eigenvectors!



Exercise

Consider the 2×2 identity matrix. How many (unit)
eigenvectors does it have?

A. 0

B. 1

C. 2

D. ∞



Solution

▶ Infinitely many!

▶ Every (nonzero) vector
is an eigenvector with
eigenvalue 1.



Solution

▶ It would be incorrect to say that the identity
matrix has just 2 orthogonal eigenvectors.

▶ Instead, the spectral theorem says: “You can find
2 different orthogonal eigenvectors of 𝐼.”

▶ There are infinitely-many ways to do this!
▶ (1, 0)𝑇 and (0, 1)𝑇
▶ (1/√2, 1/√2)𝑇 and (−1/√2, 1/√2)𝑇
▶ etc.



Diagonal Matrices

▶ If 𝐴 is diagonal, its eigenvectors are simply the
standard basis vectors.

𝐴 = (2 0
0 5)



Off-diagonal elements

𝐴 = ( 2 −0.1
−0.1 5 )



Off-diagonal elements

𝐴 = ( 2 −0.2
−0.2 5 )



Off-diagonal elements

𝐴 = ( 2 −0.3
−0.3 5 )



Off-diagonal elements

𝐴 = ( 2 −0.4
−0.4 5 )



Off-diagonal elements

𝐴 = ( 2 −0.5
−0.5 5 )



Off-diagonal elements

𝐴 = ( 2 −0.6
−0.6 5 )



Off-diagonal elements

𝐴 = ( 2 −0.7
−0.7 5 )



Off-diagonal elements

𝐴 = ( 2 −0.8
−0.8 5 )



Off-diagonal elements

𝐴 = ( 2 −0.9
−0.9 5 )



Non-Diagonal Symmetric Matrices

▶ When a symmetric matrix is not diagonal, its
eigenvectors are not the standard basis vectors.

▶ But they are still orthogonal!



Computing Eigenvectors

Use np.linalg.eigha:
»> A = np.array([[2, -1], [-1, 3]])
»> np.linalg.eigh(A)
(array([1.38196601, 3.61803399]),
array([[-0.85065081, -0.52573111],

[-0.52573111, 0.85065081]]))

aif the input is symmetric
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Why are eigenvectors useful?



OK, but why are eigenvectors3
useful?

1. Eigenvectors are natural basis vectors.

2. Eigenvectors are equilibria.

3. Eigenvectors are maximizers (or minimizers).

3of symmetric matrices



OK, but why are eigenvectors3
useful?

1. Eigenvectors are natural basis vectors.

2. Eigenvectors are equilibria.

3. Eigenvectors are maximizers (or minimizers).

3of symmetric matrices



Recall: Spectral Theorem

Theorem

Let 𝐴 be a symmetric 𝑑 × 𝑑 matrix. Then you can
find 𝑑 orthonormal eigenvectors 𝑢̂(1), … , 𝑢̂(𝑑) of 𝐴.

▶ In other words, you can make an orthonormal
basis out of eigenvectors of 𝐴.



“Nice” Bases



Using the Eigenbasis

▶ When we work in the eigenbasis of 𝐴, many
things become simpler.



Example
▶ Consider the symmetric matrix 𝐴.
▶ If we change basis, 𝐴 changes.
▶ What does it look like if we change to the eigenbasis of 𝐴?

𝐴 = (
4 2 1
2 3 2
1 2 4

)

▶ It becomes diagonal!



Example
▶ Consider the symmetric matrix 𝐴.
▶ If we change basis, 𝐴 changes.
▶ What does it look like if we change to the eigenbasis of 𝐴?

𝐴 = (
4 2 1
2 3 2
1 2 4

)
eigenbasis
−−−−−−−−−−−−→ [𝐴]U = (

1 0 0
0 3 0
0 0 7

)

▶ It becomes diagonal!



Example

▶ Evaluating the linear transformation becomes
easier, too.

▶ Suppose ⃗𝑥 = (3, 2, 1)𝑇. Before:

⃗𝑓( ⃗𝑥) = 𝐴 ⃗𝑥

= (
4 2 1
2 3 2
1 2 4

) (
3
2
1
) = (

4 × 3 + 2 × 2 + 1 × 1
2 × 3 + 3 × 2 + 2 × 1
1 × 3 + 2 × 2 + 4 × 1

) = (
17
14
11
)



Example

▶ In the eigenbasis, ⃗𝑥’s coordinates are:

[ ⃗𝑥]U = (0, √2, 2√3)𝑇

▶ So:

[𝐴]U [ ⃗𝑥]U = (
1 0 0
0 3 0
0 0 7

) (
0
√2
2√3

) = (
0
3√2
14√3

)



OK, but why are eigenvectors4
useful?

1. Eigenvectors are natural basis vectors.

2. Eigenvectors are equilibria.

3. Eigenvectors are maximizers (or minimizers).

4of symmetric matrices



Eigenvectors are Equilibria

▶ ⃗𝑓( ⃗𝑥) rotates ⃗𝑥 towards
the “top” eigenvector
⃗𝑣.

▶ ⃗𝑣 is an equilibrium.



Use Case: The Power Method

▶ Method for computing the top eigenvector/value
of 𝐴.

▶ Initialize ⃗𝑥(0) randomly

▶ Repeat until convergence:
▶ Set ⃗𝑥(𝑖+1) = 𝐴 ⃗𝑥(𝑖)/‖𝐴 ⃗𝑥(𝑖)‖



OK, but why are eigenvectors5
useful?

1. Eigenvectors are natural basis vectors.

2. Eigenvectors are equilibria.

3. Eigenvectors are maximizers (or minimizers).

5of symmetric matrices



Eigenvectors as Optimizers

▶ Eigenvectors are the solutions to certain
common optimization problems involving
matrices / linear transformations.

▶ This might be the most important reason why
eigenvectors are useful in data science.



Exercise

Draw a unit vector ⃗𝑥 such that ‖𝐴 ⃗𝑥‖ is largest.



Observation #1

▶ ⃗𝑓( ⃗𝑥) is longest along
the “main” axis of
symmetry.
▶ In the direction of
the eigenvector with
largest eigenvalue.



Exercise

Draw a unit vector ⃗𝑥 such that ‖𝐴 ⃗𝑥‖ is smallest.



Observation #2

▶ ⃗𝑓( ⃗𝑥) is smallest along
the “minor” axis of
symmetry.
▶ In the direction of
the eigenvector with
smallest eigenvalue.



Main Idea

Suppose 𝐴 is a symmetric matrix.

To maximize ‖𝐴 ⃗𝑥‖ over unit vectors, pick ⃗𝑥 to be a
top eigenvector of 𝐴. That is, an eigenvector with
the largest eigenvalue (in abs. value).

To minimize ‖𝐴 ⃗𝑥‖, pick ⃗𝑥 to be a bottom eigenvec-
tor. That is, an eigenvector with the smallest eigen-
value (in abs. value).



Main Idea

Suppose ⃗𝑓 is a symmetric linear transformation.

To maximize ‖ ⃗𝑓( ⃗𝑥)‖ over unit vectors, pick ⃗𝑥 to be
a top eigenvector of ⃗𝑓.

To minimize ‖ ⃗𝑓( ⃗𝑥)‖ over unit vectors, pick ⃗𝑥 to be
a bottom eigenvector.



Also true...

▶ ⃗𝑥 ⋅ 𝐴 ⃗𝑥 is called a quadratic form.

Theorem

Let 𝐴 be a symmetric matrix.

To maximize ⃗𝑥 ⋅ 𝐴 ⃗𝑥 over unit vectors, pick ⃗𝑥 to be a
top eigenvector of 𝐴.

To minimize ⃗𝑥 ⋅ 𝐴 ⃗𝑥 over unit vectors, pick ⃗𝑥 to be a
bottom eigenvector of 𝐴.



By the way...

▶ We’ll walk you through the proofs in the
homework.



Example
▶ Problem: Maximize 𝑓(𝑥1, 𝑥2) = 4𝑥21 + 2𝑥22 + 3𝑥1𝑥2
subject to 𝑥21 + 𝑥22 = 1

1.51.00.50.00.51.01.5
x1

1.5
1.0
0.5

0.0
0.5
1.0
1.5

x 2

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

f(x
1 , x

2 )



Solution
▶ Problem: Maximize 𝑓(𝑥1, 𝑥2) = 4𝑥21 + 2𝑥22 + 3𝑥1𝑥2
subject to 𝑥21 + 𝑥22 = 1

▶ You can write 𝑓(𝑥1, 𝑥2) as 𝑓( ⃗𝑥) = ⃗𝑥 ⋅ 𝐴 ⃗𝑥 where

𝐴 = ( 4 1.5
1.5 2 ) ⃗𝑥 = (𝑥1𝑥2)

▶ Top eigenvector of 𝐴 is approximately:
(0.88, 0.47)𝑇

▶ Solution: maximized at 𝑥1 = 0.88, 𝑥2 = 0.47



Next time...

▶ Change of basis matrices, diagonalization.

▶ Dimensionality reduction (actual ML!)


