
Lecture 03 | Part 1

News



News

▶ Cheat sheet allowed on quizzes.

▶ FinAid survey on Gradescope.
▶ If you’re here in person (and participate in the Live
Q&A), you don’t need to do this.

▶ Practice problems now on dsc140b.com

dsc140b.com


Lecture 03 | Part 2

Functions of a Vector



Transformations

▶ A transformation ⃗𝑓 is a function that takes in a
vector, and returns a vector of the same
dimensionality.

▶ That is, ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑.



Arbitrary Transformations

▶ Arbitrary transformations can be quite complex.



Arbitrary Transformations

▶ Arbitrary transformations can be quite complex.



Linear Transformations

▶ Luckily, we often1 work with simpler, linear
transformations.

▶ A transformation 𝑓 is linear if:

⃗𝑓(𝛼 ⃗𝑥 + 𝛽 ⃗𝑦) = 𝛼 ⃗𝑓( ⃗𝑥) + 𝛽 ⃗𝑓( ⃗𝑦)

1Sometimes just to make the math tractable!



Key Fact

▶ Linear functions are determined entirely by what
they do on the basis vectors.

▶ I.e., to tell you what 𝑓 does, I only need to tell
you ⃗𝑓( ̂𝑒(1)) and ⃗𝑓( ̂𝑒(2)).

▶ This makes the math easy!



Linear Algebra

▶ This is the key idea behind linear algebra.

▶ Linear algebra studies the properties of linear
transformations.

▶ Non-linear transformations are so complicated
that we can say relatively little about them.





Example Linear Transformation

▶ ⃗𝑓( ⃗𝑥) = (𝑥1 + 3𝑥2, −3𝑥1 + 5𝑥2)𝑇



Another Example Linear
Transformation

▶ ⃗𝑓( ⃗𝑥) = (2𝑥1 − 𝑥2, −𝑥1 + 3𝑥2)𝑇



Note
▶ Because of linearity, along any given direction ⃗𝑓
changes only in scale.

⃗𝑓(𝜆𝑥̂) = 𝜆 ⃗𝑓(𝑥̂)





Linear Transformations and Bases
▶ We have been writing transformations in
coordinate form. For example:

⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇

= (𝑥1 + 𝑥2) ̂𝑒(1) + (𝑥1 − 𝑥2) ̂𝑒(2)

▶ If we use a different basis, the formula for ⃗𝑓
changes:

[ ⃗𝑓( ⃗𝑥)]U = (?, ?)𝑇

= [?]𝑢̂(1) + [?]𝑢̂(2)



Linear Transformations and Bases

▶ We know that if ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2), then:

⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2) ̂𝑒(1) + (𝑥1 − 𝑥2) ̂𝑒(2)

▶ Now: if ⃗𝑥 = 𝑧1𝑢̂(1) + 𝑧2𝑢̂(2), what is:

⃗𝑓( ⃗𝑥) = ?𝑢̂(1) + ?𝑢̂(2)



Key Fact

▶ If we use linearity:

𝑓( ⃗𝑥) = 𝑓(𝑧1𝑢̂(1) + 𝑧2𝑢̂(2))
= 𝑧1𝑓(𝑢̂(1)) + 𝑧2𝑓(𝑢̂(2))

▶ Strategy: to write ⃗𝑓 in the U basis, we just need
to know what ⃗𝑓 does to 𝑢̂(1) and 𝑢̂(2).



Example
▶ Let:

▶ ⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇
▶ 𝑢̂(1) = 1

√2
(1, 1)𝑇 and 𝑢̂(2) = 1

√2
(−1, 1)𝑇.

▶ Then:

⃗𝑓(𝑢̂(1)) = ⃗𝑓 ( 1
√2
, 1
√2
)
𝑇

= (√2, 0)
𝑇
= √2 ̂𝑒(1)

⃗𝑓(𝑢̂(2)) = ⃗𝑓 (− 1
√2
, 1
√2
)
𝑇

= (0, −√2)
𝑇
= −√2 ̂𝑒(2)

▶ But we want ⃗𝑓(𝑢̂(1)) and ⃗𝑓(𝑢̂(2)) in terms of 𝑢̂(1) and 𝑢̂(2).



Example (Cont.)

▶ We have: 𝑓(𝑢̂(1)) = √2 ̂𝑒(1) and 𝑓(𝑢̂(2)) = −√2 ̂𝑒(2).

▶ To write ⃗𝑓(𝑢̂(1)) in terms of 𝑢̂(1) and 𝑢̂(2), compute:

𝑓(𝑢̂(1)) = (𝑓(𝑢̂(1)) ⋅ 𝑢̂(1))𝑢̂(1) + (𝑓(𝑢̂(1)) ⋅ 𝑢̂(2))𝑢̂(2)
=
=



Example (Cont.)

▶ We have: 𝑓(𝑢̂(1)) = √2 ̂𝑒(1) and 𝑓(𝑢̂(2)) = −√2 ̂𝑒(2).

▶ To write ⃗𝑓(𝑢̂(1)) in terms of 𝑢̂(1) and 𝑢̂(2), compute:

𝑓(𝑢̂(1)) = (𝑓(𝑢̂(1)) ⋅ 𝑢̂(1))𝑢̂(1) + (𝑓(𝑢̂(1)) ⋅ 𝑢̂(2))𝑢̂(2)

= ((√2, 0) ⋅ 1
√2
(1, 1)) 𝑢̂(1) + ((√2, 0) ⋅ 1

√2
(−1, 1)) 𝑢̂(2)

=



Example (Cont.)

▶ We have: 𝑓(𝑢̂(1)) = √2 ̂𝑒(1) and 𝑓(𝑢̂(2)) = −√2 ̂𝑒(2).

▶ To write ⃗𝑓(𝑢̂(1)) in terms of 𝑢̂(1) and 𝑢̂(2), compute:

𝑓(𝑢̂(1)) = (𝑓(𝑢̂(1)) ⋅ 𝑢̂(1))𝑢̂(1) + (𝑓(𝑢̂(1)) ⋅ 𝑢̂(2))𝑢̂(2)

= ((√2, 0) ⋅ 1
√2
(1, 1)) 𝑢̂(1) + ((√2, 0) ⋅ 1

√2
(−1, 1)) 𝑢̂(2)

= (1)𝑢̂(1) + (−1)𝑢̂(2) = 𝑢̂(1) − 𝑢̂(2)



Example (Cont.)

▶ Similarly, for ⃗𝑓(𝑢̂(2)):

𝑓(𝑢̂(2)) = (𝑓(𝑢̂(2)) ⋅ 𝑢̂(1))𝑢̂(1) + (𝑓(𝑢̂(2)) ⋅ 𝑢̂(2))𝑢̂(2)

= ((0, −√2) ⋅ 1
√2
(1, 1)) 𝑢̂(1) + ((0, −√2) ⋅ 1

√2
(−1, 1)) 𝑢̂(2)

= (−1)𝑢̂(1) + (−1)𝑢̂(2) = −𝑢̂(1) − 𝑢̂(2)



Solution

▶ Putting it all together:

𝑓( ⃗𝑥) = 𝑓(𝑧1𝑢̂(1) + 𝑧2𝑢̂(2))
= 𝑧1𝑓(𝑢̂(1)) + 𝑧2𝑓(𝑢̂(2))
= 𝑧1(𝑢̂(1) − 𝑢̂(2)) + 𝑧2(−𝑢̂(1) − 𝑢̂(2))
= (𝑧1 − 𝑧2)𝑢̂(1) + (−𝑧1 − 𝑧2)𝑢̂(2)

▶ Or, in coordinate form:

[𝑓( ⃗𝑥)]U = (𝑧1 − 𝑧2, −𝑧1 − 𝑧2)𝑇
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Matrices



Matrices?

▶ I thought this week was supposed to be about
linear algebra... Where are the matrices?

▶ What is a matrix, anyways?



Matrices?

▶ I thought this week was supposed to be about
linear algebra... Where are the matrices?

▶ What is a matrix, anyways?



What is a matrix?

(
1 2 3
4 5 6
7 8 9

)



Recall: Linear Transformations

▶ A transformation ⃗𝑓( ⃗𝑥) is a function which takes a
vector as input and returns a vector of the same
dimensionality.

▶ A transformation ⃗𝑓 is linear if

⃗𝑓(𝛼𝑢⃗ + 𝛽 ⃗𝑣) = 𝛼 ⃗𝑓(𝑢⃗) + 𝛽 ⃗𝑓( ⃗𝑣)



Recall: Linear Transformations

▶ Key consequence of linearity: to compute ⃗𝑓( ⃗𝑥),
only need to know what ⃗𝑓 does to basis vectors.

▶ Example:

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)

⃗𝑓( ⃗𝑥) =



Matrices

▶ Idea: Since ⃗𝑓 is defined by what it does to basis,
place ⃗𝑓( ̂𝑒(1)), ⃗𝑓( ̂𝑒(2)), … into a table as columns

▶ This is the matrix representing2 ⃗𝑓

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2) = (−13 )

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1) = (20)
(−1 2
3 0)

2with respect to the standard basis ̂𝑒(1), ̂𝑒(2)



Example

Write the matrix representing ⃗𝑓 with respect to the
standard basis, given:

⃗𝑓( ̂𝑒(1)) = (1, 4, 7)𝑇

⃗𝑓( ̂𝑒(2)) = (2, 5, 8)𝑇

⃗𝑓( ̂𝑒(3)) = (3, 6, 9)𝑇



Exercise

Suppose ⃗𝑓 has the matrix below:

(
1 2 3
4 5 6
7 8 9

)

Let ⃗𝑥 = (−2, 1, 3)𝑇. What is ⃗𝑓( ⃗𝑥)?

▶ A) (3, 12, 21)𝑇

▶ B) (−2, 1, 3)𝑇

▶ C) (6, 15, 24)𝑇

▶ D) (9, 15, 21)𝑇



Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
𝑓 ∶ ℝ𝑛 → ℝ𝑛.



What is matrix multiplication?

(
1 2 3
4 5 6
7 8 9

) (
−2
1
3
) = ( )



A low-level definition

(𝐴 ⃗𝑥)𝑖 =
𝑛

∑
𝑗=1

𝐴𝑖𝑗𝑥𝑗



A low-level interpretation

(
1 2 3
4 5 6
7 8 9

) (
−2
1
3
) = −2 (

1
4
7
) + 1 (

2
5
8
) + 3 (

3
6
9
)



In general...

(
↑ ↑ ↑
𝑎⃗(1) 𝑎⃗(2) 𝑎⃗(3)
↓ ↓ ↓

) (
𝑥1
𝑥2
𝑥3

) = 𝑥1𝑎⃗(1) + 𝑥2𝑎⃗(2) + 𝑥3𝑎⃗(3)



Matrix Multiplication

⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + 𝑥3 ̂𝑒(3) = (𝑥1, 𝑥2, 𝑥3)𝑇

⃗𝑓( ⃗𝑥) = 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))

𝐴 = (
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))
↓ ↓ ↓

)

𝐴 ⃗𝑥 = (
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))
↓ ↓ ↓

) (
𝑥1
𝑥2
𝑥3
)

= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))



Matrix Multiplication

▶ Matrix 𝐴 represents a linear transformation ⃗𝑓
▶ With respect to the standard basis
▶ If we use a different basis, the matrix changes!

▶ Matrix multiplication 𝐴 ⃗𝑥 evaluates ⃗𝑓( ⃗𝑥)



What are they, really?

▶ Matrices are sometimes just tables of numbers.

▶ But they often have a deeper meaning.



Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
⃗𝑓 ∶ ℝ𝑛 → ℝ𝑛.

What’s more, if 𝐴 represents ⃗𝑓, then 𝐴 ⃗𝑥 = ⃗𝑓( ⃗𝑥); that
is, multiplying by 𝐴 is the same as evaluating ⃗𝑓.



Example

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)

⃗𝑓( ⃗𝑥) =

𝐴 =

𝐴 ⃗𝑥 =



Note

▶ All of this works because we assumed ⃗𝑓 is linear.

▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.

▶ Linear algebra = simple!



Note

▶ All of this works because we assumed ⃗𝑓 is linear.

▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.

▶ Linear algebra = simple!



Matrices in Other Bases
▶ The matrix of a linear transformation wrt the
standard basis:

(
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⋯ ⃗𝑓( ̂𝑒(𝑑))
↓ ↓ ↓

)

▶ With respect to basis U :

(
↑ ↑ ↑

[ ⃗𝑓(𝑢̂(1))]U [ ⃗𝑓(𝑢̂(2))]U ⋯ [ ⃗𝑓(𝑢̂(𝑑))]U
↓ ↓ ↓

)



Example

▶ Consider the transformation ⃗𝑓 which “mirrors” a
vector over the line of 45∘.

▶ What is its matrix in the
standard basis?



Example

▶ Let 𝑢̂(1) = 1
√2
(1, 1)𝑇

▶ Let 𝑢̂(2) = 1
√2
(−1, 1)𝑇

▶ What is [ ⃗𝑓(𝑢̂(1))]U?
▶ [ ⃗𝑓(𝑢̂(2))]U?
▶ What is the matrix?
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The Spectral Theorem



Eigenvectors

▶ Let 𝐴 be an 𝑛 × 𝑛 matrix. An eigenvector of 𝐴 with
eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such that
𝐴 ⃗𝑣 = 𝜆 ⃗𝑣.



Eigenvectors (of Linear
Transformations)

▶ Let ⃗𝑓 be a linear transformation. An eigenvector
of ⃗𝑓 with eigenvalue 𝜆 is a nonzero vector ⃗𝑣 such
that 𝑓( ⃗𝑣) = 𝜆 ⃗𝑣.



Importance

▶ We will see why eigenvectors are important in
the next part.

▶ For now: what are they?



Geometric Interpretation

▶ Recall: ⃗𝑣 is an eigenvector if ⃗𝑓( ⃗𝑣) = 𝜆 ⃗𝑣.

▶ Meaning: when ⃗𝑓 is applied to one of its
eigenvectors, ⃗𝑓 simply scales it.



Geometric Interpretation

▶ The eigenvalue, 𝜆, tells us how much the
eigenvector is scaled.
▶ If 𝜆 > 1, the eigenvector is stretched.
▶ If 0 < 𝜆 < 1, the eigenvector is shrunk.
▶ If 𝜆 < 0, the eigenvector is flipped and scaled.



Exercise

Draw as many (linearly independent) eigenvectors
as you can:

𝐴 = (5 0
0 2)



Finding Eigenvectors

▶ We typically compute the eigenvectors of a
matrix with a computer.

▶ But it can help our understanding to find them
“graphically”.



Procedure

Given a matrix 𝐴 (or transformation ⃗𝑓), to find an
eigenvector “graphically”.
1. Think about (or draw) the output of ⃗𝑓 for a
handful of unit vector inputs.
▶ Linear transformations are continuous so you can
“interpolate”.

2. Find place(s) where the input vector and the
output vector are parallel.



Exercise

Draw as many (linearly independent) eigenvectors
as you can.

𝐴 = ( 2 −1
−1 3 )



Exercise

Consider the linear transformation which mirrors
its input over the line of 45∘. Give two orthogonal
eigenvectors of the transformation.



Exercise

Draw as many (linearly independent) eigenvectors
as you can.

𝐴 = ( 5 5
−10 12)



Caution!

▶ Not all matrices have even one eigenvector!3

▶ When does a matrix have multiple (linearly
independent) eigenvectors?

3That is, with a real-valued eigenvalue.



Example Linear Transformation

𝐴 = ( 5 5
−10 12)



Example Linear Transformation

𝐴 = (1 1
0 1)



Example Linear Transformation

𝐴 = (1 1
0 1)



Example Symmetric Linear
Transformation

𝐴 = ( 2 −1
−1 3 )



Example Symmetric Linear
Transformation

𝐴 = ( 2 −1
−1 3 )



Example Symmetric Linear
Transformation

𝐴 = (5 1
1 2)



Example Symmetric Linear
Transformation

𝐴 = (5 1
1 2)



Observation

▶ It seems that there is something special about
symmetric matrices...



Symmetric Matrices

▶ Recall: a matrix 𝐴 is symmetric if 𝐴𝑇 = 𝐴.

(
1 2 3
2 4 5
3 5 6

)

▶ A linear transformation ⃗𝑓 is symmetric if its
matrix representation is symmetric.



Observation #1

▶ Symmetric linear
transformations have
axes of symmetry.
▶ One for each
dimension.



Observation #2

▶ The axes of symmetry
are orthogonal to one
another.



Observation #3

▶ The action of ⃗𝑓 along an
axis of symmetry is
simply to scale its input.

▶ That is, the eigenvectors
point along the axes of
symmetry.



Observation #4

▶ The size of this
scaling can be
different for each axis.



Main Idea

The eigenvectors of a symmetric linear transfor-
mation (matrix) are its axes of symmetry. The
eigenvalues describe how much each axis of sym-
metry is scaled.



Exercise

Consider the linear transformation which mirrors
its input over the line of 45∘. Give two orthogonal
eigenvectors of the transformation.



How many?

▶ The symmetric 2 × 2 matrices we saw all had 2
orthogonal eigenvectors.

▶ Does a 3 × 3 symmetric matrix have 3 orthogonal
eigenvectors?

▶ What about 𝑛 × 𝑛 symmetric matrices?



The Spectral Theorem4

Theorem

Let 𝐴 be an 𝑛 × 𝑛 symmetric matrix. Then you can
always find 𝑛 eigenvectors of 𝐴 which are all mutu-
ally orthogonal.

4for symmetric matrices



Careful!

▶ The spectral theorem does not say that an 𝑛 × 𝑛
matrix has 𝑛 eigenvectors!



Exercise

Consider the 2×2 identity matrix. How many (unit)
eigenvectors does it have?
A. 0

B. 1

C. 2

D. ∞



Solution

▶ Infinitely many!

▶ Every (nonzero) vector
is an eigenvector with
eigenvalue 1.



Solution

▶ It would be incorrect to say that the identity
matrix has just 2 orthogonal eigenvectors.

▶ Instead, the spectral theorem says: “You can find
2 different orthogonal eigenvectors of 𝐼.”

▶ There are infinitely-many ways to do this!
▶ (1, 0)𝑇 and (0, 1)𝑇
▶ (1/√2, 1/√2)𝑇 and (−1/√2, 1/√2)𝑇
▶ etc.



Diagonal Matrices

▶ If 𝐴 is diagonal, its eigenvectors are simply the
standard basis vectors.

𝐴 = (2 0
0 5)



Off-diagonal elements

𝐴 = ( 2 −0.1
−0.1 5 )



Off-diagonal elements

𝐴 = ( 2 −0.2
−0.2 5 )



Off-diagonal elements

𝐴 = ( 2 −0.3
−0.3 5 )



Off-diagonal elements

𝐴 = ( 2 −0.4
−0.4 5 )



Off-diagonal elements

𝐴 = ( 2 −0.5
−0.5 5 )



Off-diagonal elements

𝐴 = ( 2 −0.6
−0.6 5 )



Off-diagonal elements

𝐴 = ( 2 −0.7
−0.7 5 )



Off-diagonal elements

𝐴 = ( 2 −0.8
−0.8 5 )



Off-diagonal elements

𝐴 = ( 2 −0.9
−0.9 5 )



Non-Diagonal Symmetric Matrices

▶ When a symmetric matrix is not diagonal, its
eigenvectors are not the standard basis vectors.

▶ But they are still orthogonal!



Computing Eigenvectors

Use np.linalg.eigha:
»> A = np.array([[2, -1], [-1, 3]])
»> np.linalg.eigh(A)
(array([1.38196601, 3.61803399]),
array([[-0.85065081, -0.52573111],

[-0.52573111, 0.85065081]]))

aif the input is symmetric


