
Lecture 02 | Part 1

News



News

▶ Homework 01 released, due next Wednesday.
▶ Optional!
▶ Remember: must be handwritten.

▶ Quiz 01 tonight, 8pm (in this room).
▶ Optional!



Attendance

▶ To earn credit for lecture attendance, you’ll need
to respond to (most of) the in-class polls.

▶ We’ll use the “Live Q&A” on the course page:



Important!

▶ To use the Live Q&A, you need to be on UCSD wifi.
▶ If you’re not, the page won’t load.



Setup
▶ Go ahead and open the Live Q&A page now.

▶ Remember, it is linked at dsc140b.com.

▶ You’ll be asked for your PID. Enter it.

▶ You should then see:1

1If you couldn’t get it to work, let me know after class.

dsc140b.com


Exercise

Do you plan on taking the quiz tonight?

▶ True = Yes
▶ False = No



By the way...
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Why Linear Algebra?



Last Time



Last Time

0.10 0.05 0.00 0.05 0.10

0.15

0.10

0.05

0.00

0.05

0.10



Dimensionality Reduction

▶ This is an example of dimensionality reduction:
▶ Input: vectors in ℝ10,000.
▶ Output: vectors in ℝ2.

▶ The method which produced this result is called
Laplacian Eigenmaps.

▶ How does it work?



A Preview of Laplacian Eigenmaps

To reduce dimensionality from 𝑑 to 𝑑′:

1. Create an undirected similarity graph 𝐺
▶ Each vector in ℝ𝑑 becomes a node in the graph.
▶ Make edge (𝑢, 𝑣) if 𝑢 and 𝑣 are “close”

2. Form the graph Laplacian matrix, 𝐿:
▶ Let 𝐴 be the adjacency matrix, 𝐷 be the degree matrix.
▶ Define the graph Laplacian matrix, 𝐿 = 𝐷 − 𝐴.

3. Compute 𝑑′ eigenvectors of 𝐿.
▶ Each eigenvector gives one new feature.



Why eigenvectors?

▶ We will cover Laplacian Eigenmaps in much
greater detail.

▶ For now: why do eigenvectors appear here?
▶ What are eigenvectors?
▶ How are they useful?
▶ Why is linear algebra important in ML?
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Coordinate Vectors



Coordinate Vectors

▶ We can write a vector ⃗𝑥 ∈ ℝ𝑑 as a coordinate
vector:

⃗𝑥 = (

𝑥1
𝑥2
⋮
𝑥𝑑

)



Example

⃗𝑥 = ( 2−3)

⃗𝑦 = (02)



Standard Basis
▶ Writing a vector in coordinate form requires
choosing a basis.

▶ The “default” is the standard basis: ̂𝑒(1), … , ̂𝑒(𝑑).



Standard Basis

▶ When we write ⃗𝑥 = (𝑥1, … , 𝑥𝑑)𝑇, we mean that
⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + …𝑥𝑑 ̂𝑒(𝑑).

Example: ⃗𝑥 = (3, −2)𝑇



Standard Basis Coordinates

▶ In coordinate form:

̂𝑒(𝑖) =
⎛⎜⎜⎜⎜

⎝

0
0
⋮
1
⋮
0
0

⎞⎟⎟⎟⎟

⎠

where the 1 appears in the 𝑖th place.



Exercise

Let ⃗𝑥 = (3, 7, 2, −5)𝑇. What is ⃗𝑥 ⋅ ̂𝑒(4)?



Recall: the Dot Product

▶ The dot product of 𝑢⃗ and ⃗𝑣 is defined as:

𝑢⃗ ⋅ ⃗𝑣 = ‖𝑢⃗‖‖ ⃗𝑣‖ cos 𝜃

where 𝜃 is the angle between 𝑢⃗ and ⃗𝑣.

▶ 𝑢⃗ ⋅ ⃗𝑣 = 0 if and only if 𝑢⃗ and ⃗𝑣 are orthogonal



Dot Product (Coordinate Form)

▶ In terms of coordinate vectors:

𝑢⃗ ⋅ ⃗𝑣 = 𝑢⃗𝑇 ⃗𝑣

= (𝑢1 𝑢2 ⋯ 𝑢𝑑) (

𝑣1
𝑣2
⋯
𝑣𝑑

)

=

▶ This definition assumes the standard basis.



Example

(

3
7
2
−5

) ⋅ (

0
0
0
1

) =



Other Bases

▶ The standard basis is not the only basis.

▶ Sometimes more convenient to use another.



Example



Orthonormal Bases

▶ Orthonormal bases are particularly nice.

▶ A set of vectors 𝑢̂(1), … , 𝑢̂(𝑑) forms an orthonomal
basis U for 𝑅𝑑 if:
▶ They are mutually orthogonal: 𝑢̂(𝑖) ⋅ 𝑢̂(𝑗) = 0.
▶ They are all unit vectors: ‖𝑢̂(𝑖)‖ = 1.



Example

𝑢̂(1) = 1
√2

(11) 𝑢̂(2) = 1
√2

(−11 )



Coordinate Vectors

▶ A vector’s coordinates depend on the basis used.

▶ If we are using the basis U = {𝑢̂(1), 𝑢̂(2)}, then
⃗𝑥 = (𝑥1, 𝑥2)𝑇 means ⃗𝑥 = 𝑥1𝑢̂(1) + 𝑥2𝑢̂(2).

▶ We will write [ ⃗𝑥]U = (𝑥1, … , 𝑥𝑑)𝑇 to denote that the
coordinates are with respect to the basis U .



Exercise

Let 𝑢̂(1) = 1
√2
(1, 1)𝑇 and 𝑢̂(2) = 1

√2
(−1, 1)𝑇. Suppose

[ ⃗𝑥]U = (3, −4)𝑇. What is ⃗𝑥 ⋅ 𝑢̂(1)?



Exercise

Consider ⃗𝑥 = (2, 2)𝑇 and let 𝑢̂(1) = 1
√2
(1, 1)𝑇 and 𝑢̂(2) =

1
√2
(−1, 1)𝑇. What is [ ⃗𝑥]U?

▶ A) (0, 2√2)𝑇

▶ B) (2, 2)𝑇

▶ C) (2√2, 0)𝑇

▶ D) (√2, √2)𝑇



Change of Basis

▶ How do we compute the coordinates of a vector
in a new orthonormal basis, U?

▶ Some trigonometry is involved.

▶ Key Fact: 𝑎⃗ ⋅ 𝑏⃗ = ‖𝑎⃗‖‖𝑏⃗‖ cos 𝜃



Change of Basis

(𝑎1, 𝑎2)

⃗𝑥

𝑎1

𝑎2

▶ Suppose we know
⃗𝑥 = (𝑎1, 𝑎2)𝑇 w.r.t. standard
basis.

▶ Then ⃗𝑥 = 𝑎1 ̂𝑒(1) + 𝑎2 ̂𝑒(2)



Change of Basis

(𝑎1, 𝑎2)

⃗𝑥

𝑢̂(1)
𝑢̂(2)

𝑏1

𝑏2

𝜃1
𝜃2

▶ Want to write:
⃗𝑥 = 𝑏1𝑢̂(1) + 𝑏2𝑢̂(2)

▶ Need to find 𝑏1 and 𝑏2.



Change of Basis

(𝑎1, 𝑎2)

⃗𝑥

𝑎1

𝑎2

𝑢̂(1)
𝑢̂(2)

𝑏1

𝑏2

𝜃1
𝜃2

▶ Exercise: Solve for 𝑏1,
writing the answer as a
dot product.

▶ Hint: cos 𝜃 =
adjacent/hypotenuse



Change of Basis

▶ Let U = {𝑢̂(1), … , 𝑢̂(𝑑)} be an orthonormal basis.

▶ The coordinates of ⃗𝑥 w.r.t. U are:

[ ⃗𝑥]U = (

⃗𝑥 ⋅ 𝑢̂(1)
⃗𝑥 ⋅ 𝑢̂(2)

⋮
⃗𝑥 ⋅ 𝑢̂(𝑑)

)



Change of Basis

▶ Equivalently, to express ⃗𝑥 in basis U :

⃗𝑥 = ( ⃗𝑥 ⋅ 𝑢̂(1))𝑢̂(1) + ( ⃗𝑥 ⋅ 𝑢̂(2))𝑢̂(2) + … + ( ⃗𝑥 ⋅ 𝑢̂(𝑑))𝑢̂(𝑑)



Exercise

Suppose ⃗𝑥 = (2, 1)𝑇 and let 𝑢̂(1) = 1
√2
(1, 1)𝑇 and 𝑢̂(2) =

1
√2
(−1, 1)𝑇. What is [ ⃗𝑥]U?

▶ A) (3√22 ,
−√2
2 )

𝑇

▶ B) (√22 ,
3√2
2 )

𝑇

▶ C) (2, 1)𝑇

▶ D) ( 3
√2
, 1
√2
)
𝑇



Exercise

Let ⃗𝑥 = (−1, 2)𝑇 and suppose:

𝑢̂(1) ⋅ ̂𝑒(1) = 35 𝑢̂(2) ⋅ ̂𝑒(1) = −45
𝑢̂(1) ⋅ ̂𝑒(2) = 45 𝑢̂(2) ⋅ ̂𝑒(2) = 35

What is [ ⃗𝑥]U?

▶ A) (1, 2)𝑇

▶ B) (2, 1)𝑇

▶ C) (−1, 2)𝑇

▶ D) (5, 10)𝑇
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Functions of a Vector

▶ In ML, we often work with functions of a vector:
𝑓 ∶ ℝ𝑑 → ℝ𝑑′.

▶ Example: a prediction function, 𝐻( ⃗𝑥).

▶ Functions of a vector can return:
▶ a number: 𝑓 ∶ ℝ𝑑 → ℝ1

▶ a vector ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑′

▶ something else?



Transformations

▶ A transformation ⃗𝑓 is a function that takes in a
vector, and returns a vector of the same
dimensionality.

▶ That is, ⃗𝑓 ∶ ℝ𝑑 → ℝ𝑑.



Visualizing Transformations

▶ A transformation is a vector field.
▶ Assigns a vector to each point in space.
▶ Example: ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇



Example

▶ ⃗𝑓( ⃗𝑥) = (3𝑥1, 𝑥2)𝑇



Arbitrary Transformations

▶ Arbitrary transformations can be quite complex.



Arbitrary Transformations

▶ Arbitrary transformations can be quite complex.



Linear Transformations

▶ Luckily, we often2 work with simpler, linear
transformations.

▶ A transformation 𝑓 is linear if:

⃗𝑓(𝛼 ⃗𝑥 + 𝛽 ⃗𝑦) = 𝛼 ⃗𝑓( ⃗𝑥) + 𝛽 ⃗𝑓( ⃗𝑦)

2Sometimes just to make the math tractable!



Checking Linearity

▶ To check if a transformation is linear, use the
definition.

▶ Example: ⃗𝑓( ⃗𝑥) = (𝑥2, −𝑥1)𝑇



Exercise

Let ⃗𝑓( ⃗𝑥) = (𝑥1 + 3, 𝑥2). True or False: ⃗𝑓 is a linear
transformation.



Solution

▶ False. ⃗𝑓 is not a linear transformation.

▶ To see this, note that any linear transformation
must satisfy ⃗𝑓(0⃗) = 0⃗.

▶ However, ⃗𝑓(0⃗) = (0 + 3, 0)𝑇 = (3, 0)𝑇 ≠ 0⃗.

▶ Therefore, ⃗𝑓 is not linear.



Implications of Linearity

▶ Suppose ⃗𝑓 is a linear transformation. Then:

⃗𝑓( ⃗𝑥) = ⃗𝑓(𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2))
= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2))

▶ I.e., ⃗𝑓 is totally determined by what it does to the
basis vectors.



The Complexity of Arbitrary
Transformations

▶ Suppose 𝑓 is an arbitrary transformation.

▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.

▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇.

▶ What is ⃗𝑓( ⃗𝑥)?



The Simplicity of Linear
Transformations

▶ Suppose 𝑓 is a linear transformation.

▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.

▶ I tell you ⃗𝑥 = (𝑥1, 𝑥2)𝑇.

▶ What is ⃗𝑓( ⃗𝑥)?



Exercise

▶ Suppose 𝑓 is a linear transformation.
▶ I tell you ⃗𝑓( ̂𝑒(1)) = (2, 1)𝑇 and ⃗𝑓( ̂𝑒(2)) = (−3, 0)𝑇.
▶ I tell you ⃗𝑥 = (3, −4)𝑇.
▶ What is ⃗𝑓( ⃗𝑥)?

▶ A) (3, 18)𝑇

▶ B) (6, 3)𝑇

▶ C) (−6, 3)𝑇

▶ D) (18, 3)𝑇



Key Fact

▶ Linear functions are determined entirely by what
they do on the basis vectors.

▶ I.e., to tell you what 𝑓 does, I only need to tell
you ⃗𝑓( ̂𝑒(1)) and ⃗𝑓( ̂𝑒(2)).

▶ This makes the math easy!



Linear Algebra

▶ This is the key idea behind linear algebra.

▶ Linear algebra studies the properties of linear
transformations.

▶ Non-linear transformations are so complicated
that we can say relatively little about them.





Example Linear Transformation

▶ ⃗𝑓( ⃗𝑥) = (𝑥1 + 3𝑥2, −3𝑥1 + 5𝑥2)𝑇



Another Example Linear
Transformation

▶ ⃗𝑓( ⃗𝑥) = (2𝑥1 − 𝑥2, −𝑥1 + 3𝑥2)𝑇



Note
▶ Because of linearity, along any given direction ⃗𝑓
changes only in scale.

⃗𝑓(𝜆𝑥̂) = 𝜆 ⃗𝑓(𝑥̂)





Linear Transformations and Bases
▶ We have been writing transformations in
coordinate form. For example:

⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇

= (𝑥1 + 𝑥2) ̂𝑒(1) + (𝑥1 − 𝑥2) ̂𝑒(2)

▶ If we use a different basis, the formula for ⃗𝑓
changes:

[ ⃗𝑓( ⃗𝑥)]U = (?, ?)𝑇

= [?]𝑢̂(1) + [?]𝑢̂(2)



Linear Transformations and Bases

▶ We know that if ⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2), then:

⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2) ̂𝑒(1) + (𝑥1 − 𝑥2) ̂𝑒(2)

▶ Now: if ⃗𝑥 = 𝑧1𝑢̂(1) + 𝑧2𝑢̂(2), what is:

⃗𝑓( ⃗𝑥) = ?𝑢̂(1) + ?𝑢̂(2)



Key Fact

▶ If we use linearity:

𝑓( ⃗𝑥) = 𝑓(𝑧1𝑢̂(1) + 𝑧2𝑢̂(2))
= 𝑧1𝑓(𝑢̂(1)) + 𝑧2𝑓(𝑢̂(2))

▶ Strategy: to write ⃗𝑓 in the U basis, we just need
to know what ⃗𝑓 does to 𝑢̂(1) and 𝑢̂(2).



Example
▶ Let:

▶ ⃗𝑓( ⃗𝑥) = (𝑥1 + 𝑥2, 𝑥1 − 𝑥2)𝑇
▶ 𝑢̂(1) = 1

√2
(1, 1)𝑇 and 𝑢̂(2) = 1

√2
(−1, 1)𝑇.

▶ Then:

⃗𝑓(𝑢̂(1)) = ⃗𝑓 ( 1
√2
, 1
√2
)
𝑇

= (√2, 0)
𝑇
= √2 ̂𝑒(1)

⃗𝑓(𝑢̂(2)) = ⃗𝑓 (− 1
√2
, 1
√2
)
𝑇

= (0, −√2)
𝑇
= −√2 ̂𝑒(2)

▶ But we want ⃗𝑓(𝑢̂(1)) and ⃗𝑓(𝑢̂(2)) in terms of 𝑢̂(1) and 𝑢̂(2).



Example (Cont.)

▶ We have: 𝑓(𝑢̂(1)) = √2 ̂𝑒(1) and 𝑓(𝑢̂(2)) = −√2 ̂𝑒(2).

▶ To write ⃗𝑓(𝑢̂(1)) in terms of 𝑢̂(1) and 𝑢̂(2), compute:

𝑓(𝑢̂(1)) = (𝑓(𝑢̂(1)) ⋅ 𝑢̂(1))𝑢̂(1) + (𝑓(𝑢̂(1)) ⋅ 𝑢̂(2))𝑢̂(2)
=
=



Example (Cont.)

▶ We have: 𝑓(𝑢̂(1)) = √2 ̂𝑒(1) and 𝑓(𝑢̂(2)) = −√2 ̂𝑒(2).

▶ To write ⃗𝑓(𝑢̂(1)) in terms of 𝑢̂(1) and 𝑢̂(2), compute:

𝑓(𝑢̂(1)) = (𝑓(𝑢̂(1)) ⋅ 𝑢̂(1))𝑢̂(1) + (𝑓(𝑢̂(1)) ⋅ 𝑢̂(2))𝑢̂(2)

= ((√2, 0) ⋅ 1
√2
(1, 1)) 𝑢̂(1) + ((√2, 0) ⋅ 1

√2
(−1, 1)) 𝑢̂(2)

=



Example (Cont.)

▶ We have: 𝑓(𝑢̂(1)) = √2 ̂𝑒(1) and 𝑓(𝑢̂(2)) = −√2 ̂𝑒(2).

▶ To write ⃗𝑓(𝑢̂(1)) in terms of 𝑢̂(1) and 𝑢̂(2), compute:

𝑓(𝑢̂(1)) = (𝑓(𝑢̂(1)) ⋅ 𝑢̂(1))𝑢̂(1) + (𝑓(𝑢̂(1)) ⋅ 𝑢̂(2))𝑢̂(2)

= ((√2, 0) ⋅ 1
√2
(1, 1)) 𝑢̂(1) + ((√2, 0) ⋅ 1

√2
(−1, 1)) 𝑢̂(2)

= (1)𝑢̂(1) + (−1)𝑢̂(2) = 𝑢̂(1) − 𝑢̂(2)



Example (Cont.)

▶ Similarly, for ⃗𝑓(𝑢̂(2)):

𝑓(𝑢̂(2)) = (𝑓(𝑢̂(2)) ⋅ 𝑢̂(1))𝑢̂(1) + (𝑓(𝑢̂(2)) ⋅ 𝑢̂(2))𝑢̂(2)

= ((0, −√2) ⋅ 1
√2
(1, 1)) 𝑢̂(1) + ((0, −√2) ⋅ 1

√2
(−1, 1)) 𝑢̂(2)

= (−1)𝑢̂(1) + (−1)𝑢̂(2) = −𝑢̂(1) − 𝑢̂(2)



Solution

▶ Putting it all together:

𝑓( ⃗𝑥) = 𝑓(𝑧1𝑢̂(1) + 𝑧2𝑢̂(2))
= 𝑧1𝑓(𝑢̂(1)) + 𝑧2𝑓(𝑢̂(2))
= 𝑧1(𝑢̂(1) − 𝑢̂(2)) + 𝑧2(−𝑢̂(1) − 𝑢̂(2))
= (𝑧1 − 𝑧2)𝑢̂(1) + (−𝑧1 − 𝑧2)𝑢̂(2)

▶ Or, in coordinate form:

[𝑓( ⃗𝑥)]U = (𝑧1 − 𝑧2, −𝑧1 − 𝑧2)𝑇
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Matrices?

▶ I thought this week was supposed to be about
linear algebra... Where are the matrices?

▶ What is a matrix, anyways?



Matrices?

▶ I thought this week was supposed to be about
linear algebra... Where are the matrices?

▶ What is a matrix, anyways?



What is a matrix?

(
1 2 3
4 5 6
7 8 9

)



Recall: Linear Transformations

▶ A transformation ⃗𝑓( ⃗𝑥) is a function which takes a
vector as input and returns a vector of the same
dimensionality.

▶ A transformation ⃗𝑓 is linear if

⃗𝑓(𝛼𝑢⃗ + 𝛽 ⃗𝑣) = 𝛼 ⃗𝑓(𝑢⃗) + 𝛽 ⃗𝑓( ⃗𝑣)



Recall: Linear Transformations

▶ Key consequence of linearity: to compute ⃗𝑓( ⃗𝑥),
only need to know what ⃗𝑓 does to basis vectors.

▶ Example:

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)

⃗𝑓( ⃗𝑥) =



Matrices

▶ Idea: Since ⃗𝑓 is defined by what it does to basis,
place ⃗𝑓( ̂𝑒(1)), ⃗𝑓( ̂𝑒(2)), … into a table as columns

▶ This is the matrix representing3 ⃗𝑓

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2) = (−13 )

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1) = (20)
(−1 2
3 0)

3with respect to the standard basis ̂𝑒(1), ̂𝑒(2)



Example

Write the matrix representing ⃗𝑓 with respect to the
standard basis, given:

⃗𝑓( ̂𝑒(1)) = (1, 4, 7)𝑇

⃗𝑓( ̂𝑒(2)) = (2, 5, 8)𝑇

⃗𝑓( ̂𝑒(3)) = (3, 6, 9)𝑇



Exercise

Suppose ⃗𝑓 has the matrix below:

(
1 2 3
4 5 6
7 8 9

)

Let ⃗𝑥 = (−2, 1, 3)𝑇. What is ⃗𝑓( ⃗𝑥)?

▶ A) (3, 12, 21)𝑇

▶ B) (−2, 1, 3)𝑇

▶ C) (6, 15, 24)𝑇

▶ D) (9, 15, 21)𝑇



Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
𝑓 ∶ ℝ𝑛 → ℝ𝑛.



What is matrix multiplication?

(
1 2 3
4 5 6
7 8 9

) (
−2
1
3
) = ( )



A low-level definition

(𝐴 ⃗𝑥)𝑖 =
𝑛

∑
𝑗=1

𝐴𝑖𝑗𝑥𝑗



A low-level interpretation

(
1 2 3
4 5 6
7 8 9

) (
−2
1
3
) = −2 (

1
4
7
) + 1 (

2
5
8
) + 3 (

3
6
9
)



In general...

(
↑ ↑ ↑
𝑎⃗(1) 𝑎⃗(2) 𝑎⃗(3)
↓ ↓ ↓

) (
𝑥1
𝑥2
𝑥3

) = 𝑥1𝑎⃗(1) + 𝑥2𝑎⃗(2) + 𝑥3𝑎⃗(3)



Matrix Multiplication

⃗𝑥 = 𝑥1 ̂𝑒(1) + 𝑥2 ̂𝑒(2) + 𝑥3 ̂𝑒(3) = (𝑥1, 𝑥2, 𝑥3)𝑇

⃗𝑓( ⃗𝑥) = 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))

𝐴 = (
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))
↓ ↓ ↓

)

𝐴 ⃗𝑥 = (
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⃗𝑓( ̂𝑒(3))
↓ ↓ ↓

) (
𝑥1
𝑥2
𝑥3
)

= 𝑥1 ⃗𝑓( ̂𝑒(1)) + 𝑥2 ⃗𝑓( ̂𝑒(2)) + 𝑥3 ⃗𝑓( ̂𝑒(3))



Matrix Multiplication

▶ Matrix 𝐴 represents a linear transformation ⃗𝑓
▶ With respect to the standard basis
▶ If we use a different basis, the matrix changes!

▶ Matrix multiplication 𝐴 ⃗𝑥 evaluates ⃗𝑓( ⃗𝑥)



What are they, really?

▶ Matrices are sometimes just tables of numbers.

▶ But they often have a deeper meaning.



Main Idea

A square (𝑛 × 𝑛) matrix can be interpreted as a
compact representation of a linear transformation
⃗𝑓 ∶ ℝ𝑛 → ℝ𝑛.

What’s more, if 𝐴 represents ⃗𝑓, then 𝐴 ⃗𝑥 = ⃗𝑓( ⃗𝑥); that
is, multiplying by 𝐴 is the same as evaluating ⃗𝑓.



Example

⃗𝑥 = 3 ̂𝑒(1) − 4 ̂𝑒(2) = ( 3−4)

⃗𝑓( ̂𝑒(1)) = − ̂𝑒(1) + 3 ̂𝑒(2)

⃗𝑓( ̂𝑒(2)) = 2 ̂𝑒(1)

⃗𝑓( ⃗𝑥) =

𝐴 =

𝐴 ⃗𝑥 =



Note

▶ All of this works because we assumed ⃗𝑓 is linear.

▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.

▶ Linear algebra = simple!



Note

▶ All of this works because we assumed ⃗𝑓 is linear.

▶ If it isn’t, evaluating ⃗𝑓 isn’t so simple.

▶ Linear algebra = simple!



Matrices in Other Bases
▶ The matrix of a linear transformation wrt the
standard basis:

(
↑ ↑ ↑
⃗𝑓( ̂𝑒(1)) ⃗𝑓( ̂𝑒(2)) ⋯ ⃗𝑓( ̂𝑒(𝑑))
↓ ↓ ↓

)

▶ With respect to basis U :

(
↑ ↑ ↑

[ ⃗𝑓(𝑢̂(1))]U [ ⃗𝑓(𝑢̂(2))]U ⋯ [ ⃗𝑓(𝑢̂(𝑑))]U
↓ ↓ ↓

)



Example

▶ Consider the transformation ⃗𝑓 which “mirrors” a
vector over the line of 45∘.

▶ What is its matrix in the
standard basis?



Example

▶ Let 𝑢̂(1) = 1
√2
(1, 1)𝑇

▶ Let 𝑢̂(2) = 1
√2
(−1, 1)𝑇

▶ What is [ ⃗𝑓(𝑢̂(1))]U?
▶ [ ⃗𝑓(𝑢̂(2))]U?
▶ What is the matrix?


