
DSC 140B - Homework 02
Due: Wednesday, January 21

Instructions:

• Write your solutions to the following problems by hand, either on on another piece of paper that
you scan or using a tablet. Typed solutions will not be accepted for credit!

• Unless otherwise noted by the problem’s instructions, show your work or provide some justification
for your answer.

• Homework problems are graded pass/fail on completeness and effort, not correctness.

• Homeworks are due via Gradescope at 11:59 PM.

Problem 1. (1 credit)

Suppose (just like in the last homework) that in a group of 1000 people, 600 currently live in California and
400 currently live in Texas. In any given year, 5% of the people living in California move to Texas, and 3%
of the people living in Texas move to California. You may assume that the people do not move to any other
states.

We can represent the current number of people living in California and Texas with a population vector :

~p = (# in California,# in Texas)T .

The initial situation described above is represented by the population vector (600, 400)T .

a) Let ~f(~p) be the linear transformation which takes in a current population vector, ~p = (c, t)T , and
returns the population vector after one year has passed. In part (b) of the corresponding problem on
the last homework, you should have found the following formula for ~f with respect to the standard
basis:

~f(~p) = (.95c+ .03t, .05c+ .97t)T

Write the matrix A representing ~f with respect to the standard basis.

b) Using a matrix multiplication, find the population vector after one year has passed, given that the
initial population vector is (600, 400)T . Your result should not contain decimals.

c) In part (f) of the last homework, we saw that two eigenvectors of A are

~u(1) =

(
375
625

)
~u(2) =

(
1
−1

)
Verify that these are eigenvectors of the matrix A by performing the matrix multiplication.

d) Write the matrix AU of the linear transformation ~f with respect to the basis U = {~u(1), ~u(2)}.

e) In part (f) of the last homework, you found that the initial population vector ~x = (600, 400)T expressed
in the new basis has coordinates [~x]U = (1, 225)T .

Compute AU [~x]U and then convert the resulting to a coordinate vector in the standard basis.

Hint: your result should be familiar.
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Problem 2. (1.5 credits)

In this problem, we will prove that for a symmetric matrix A, the unit vector ~x that maximizes ‖A~x‖2 is
the eigenvector corresponding to the largest eigenvalue (in absolute value).1

Let A be a d× d symmetric matrix and let û(1), û(2), . . . , û(d) be d of its eigenvectors. Assume that they are
all mutually orthogonal and have unit norm (the spectral theorem guarantees this is possible to assume). Let
λ1, λ2, . . . , λd be the corresponding eigenvalues, and assume that they are in decreasing order by magnitude.
That is: |λ1| ≥ |λ2| ≥ · · · ≥ |λd|.

a) The eigenvectors û(1), . . . , û(d) form an orthonormal basis for Rd. This means that any vector ~x ∈ Rd

can be written as a linear combination:

~x = a1û
(1) + a2û

(2) + · · ·+ adû
(d)

for some coefficients a1, . . . , ad ∈ R. This is called the eigendecomposition of ~x with respect to the
eigenvectors of A.

If ~x is a unit vector (i.e., ‖~x‖ = 1), show that the coefficients must satisfy a21 + a22 + · · ·+ a2d = 1.

Hint: Use the fact that the eigenvectors are orthonormal, meaning û(i) · û(j) = 0 if i 6= j and
û(i) · û(i) = 1 for all i.

b) Again let ~x = a1û
(1) + a2û

(2) + · · ·+ adû
(d) be the eigendecomposition of ~x. Show that:

A~x = a1λ1û
(1) + a2λ2û

(2) + · · ·+ adλdû
(d)

c) Again let ~x = a1û
(1) + a2û

(2) + · · ·+ adû
(d) be the eigendecomposition of ~x. Show that:

‖A~x‖2 = λ2
1a

2
1 + λ2

2a
2
2 + · · ·+ λ2

da
2
d

d) Remember our original goal: we want to find a unit vector ~x that maximizes ‖A~x‖2.

From part (c), we know that we can write ‖A~x‖2 as

λ2
1a

2
1 + λ2

2a
2
2 + · · ·+ λ2

da
2
d,

and from part (a), we know that if ~x is a unit vector, then

a21 + a22 + · · ·+ a2d = 1.

So, maximizing ‖A~x‖2 over unit vectors ~x is equivalent to maximizing λ2
1a

2
1+λ2

2a
2
2+· · ·+λ2

da
2
d. subject

to the constraint a21 + a22 + · · ·+ a2d = 1.

What choice of a1, a2, . . . , ad maximizes this quantity? You don’t need to rigorously prove that your
choice is the best one; just explain your reasoning.

Hint: think of the constraint as a “budget”. That is, you have a total of 1 unit to distribute among
a21, a

2
2, . . . , a

2
d. You’ll want to use the fact that |λ1| ≥ |λ2| ≥ · · · ≥ |λd| to figure out the best allocation.

e) The last part effectively proved that the unit vector maximizing ‖A~x‖2 is the eigenvector corresponding
to the largest eigenvalue (in absolute value). Explain (in just a sentence or two) why this follows.

f) Now consider a related but different problem: maximizing vecxTA~x subject to ‖~x‖ = 1. Using a similar
approach as above, show that this is maximized by taking ~x to be the eigenvector corresponding to
the largest eigenvalue (not in absolute value). What is the maximum value of ~xTA~x in this case?

Note: Here we care about the largest eigenvalue itself, not the largest in absolute value. For instance,
if λ1 = 5 and λ2 = −10, the maximum of ~xTA~x is 5, not 10.

1This implies, by the way, that the unit vector that maximizes ‖A~x‖ is also the eigenvector corresponding to the largest
eigenvalue (in absolute value), since the square root function is monotonically increasing.
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Problem 3. (1.5 credits)

Let g(~x) = g(x1, x2) = 4x2
1 + 3x2

2 + 10x1x2, where we’ve defined ~x = (x1, x2)
T . In this problem, we will

consider maximizing g subject to the constraint x2
1 + x2

2 = 1.

You saw how to solve optimization problems like this in your multivariate calculus class using the method of
Lagrange multipliers. Informally-speaking, the idea behind Lagrange multipliers is that the gradient vector
of g and the gradient of the constraint x2

1 + x2
2 − 1 should be parallel at a constrained optimum. Since two

vectors ~a and ~b are parallel if and only if ~a = λ~b for some λ, and since the gradient of the constraint is simply
(2x1, 2x2)

T = 2~x, this means that a local optimum should satisfy ∇g(~x) = 2λ~x. This looks similar to the
eigenvector equation A~x = λ~x; in this problem we’ll make the connection clearer.

a) The Lagrange multiplier approach says that we should define the Lagrangian:

L(x1, x2, λ) = g(~x)− λ(x2
1 + x2

2 − 1)

We then solve the system of three equations in three unknowns:

∂L
∂x1

= 0

∂L
∂x2

= 0

∂L
∂λ

= 0

Write out and solve this system for x1, x2, and λ.

Hint: Try to get a formula for x2
1 in terms of λ only, and same for x2

2. When you get to this point, you
will be able to substitute your formulas for x2

1 and x2
2 into ∂L/∂λ = 0 to get a function of the form

a1
(b1λ+ c1)2 + d1

+
a2

(b2λ+ c2)2 + d2
− 1 = 0,

where the a, b, c, d’s are all constants. We want to solve this for λ, which is not easy to do analytically.
Instead, solve it numerically using scipy.optimize.fsolve, or similar. Once you’ve solved for λ, you
can plug it back in to your equations for x2

1 and x2
2. Some of the possible combinations of x1 and x2

you get may not actually solve the original system of equations; be sure to check which ones do by
plugging them back into the original equations and making sure they equal zero.

Note: when you use code (like fsolve) to solve part of the problem, you do not need to include your
code in your writeup. Just describe what you did.

b) The equation g(~x) = 4x2
1 +3x2

2 +10x1x2 can be written in matrix-vector form as g(~x) = ~xTA~x for an
appropriately-defined matrix, A. Find this matrix A, and show that the matrix form is equivalent to
the original form.

You can assume that A is symmetric.

c) Using whatever method you choose (e.g., numpy), compute the eigenvectors and eigenvalues of A.
Show that the eigenvectors are the same as your solution to part (a).

d) We saw in lecture that a matrix can be interpreted as the representation of a linear transformation
~f(~x). It turns out that A represents the gradient of ~g.

Show that A represents the linear transformation ~f(~x) = 1
2∇g(~x), ∇g(~x) = (∂g/∂x1, where ∂g/∂x2)

T

is the gradient of g.
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Therefore, for a function g of the form ax2
1 + bx2

2 + cx1x2, the gradient is a linear transformation that can
be computed by a matrix multiplication, and the method of Lagrange multipliers is equivalent to finding an
eigenvector of the matrix representing the gradient.
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